Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shan Gao,* Chang-Sheng Gu, Li-Hua Huo, Ji-Wei Liu and Jing-Gui Zhao

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.105$
Data-to-parameter ratio $=14.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Printed in Great Britain - all rights reserved

catena-Poly[[[diaquabis(3-hydroxypyridine- $\kappa \boldsymbol{N}$)-cobalt(II)]- μ-(4-carboxylatophenoxy)acetato- $\left.\kappa^{2} O: O^{\prime}\right]$ monohydrate]

In the title one-dimensional coordination polymer, $\{[\mathrm{Co}(4-$ $\left.\left.\mathrm{CPOA})(3-\mathrm{PyOH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n} \quad\left[4-\mathrm{CPOA}^{2-}\right.$ is the $4-$ carboxyphenoxyacetate dianion $\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{5}{ }^{2-}\right)$ and $3-\mathrm{PyOH}$ is 3-hydroxypyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}\right)$], the $\mathrm{Co}^{\mathrm{II}}$ atom has a distorted octahedral coordination geometry, defined by two carboxyl Oatom donors from two $4-\mathrm{CPOA}^{2-}$ groups, two N -atom donors from two $3-\mathrm{PyOH}$ co-ligands and two water molecules. The $\mathrm{Co}^{\mathrm{II}}$ atoms are bridged by bis-monodentate carboxylate groups, forming a one-dimensional chain structure. The Co \cdots Co separation within the polymer is 10.862 (3) \AA. The chains are linked into a three-dimensional supramolecular network via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Molecular self-assembly of supramolecular architectures has received much attention during recent decades (Tao et al., 2000; Choi \& Jeon, 2003). The structures and properties of such systems depend on the coordination and geometric preferences of both the central metal ions and the bridging building blocks, as well as on the influence of weaker noncovalent interactions, such as hydrogen bonds and $\pi-\pi$ stacking interactions. As a building block, 4-carboxyphenoxyacetic acid $\left(4-\mathrm{CPOAH}_{2}\right)$ is a multidentate carboxylate ligand with both rigid and flexible parts, which not only has

(I)
multiple coordination possibilities but can also form regular hydrogen bonds by functioning as both a hydrogen-bond donor and acceptor. Hence, 4- CPOAH_{2} is an excellent candidate for the construction of supramolecular complexes. However, there have been few reports to date on the coordination chemistry of 4-carboxyphenoxyacetic acid. Recently, we reported the structures of one mononuclear complex, $\left[\mathrm{Mg}(4-\mathrm{CPOAH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ (Gao et al., 2004), and two onedimensional polymers, $\left[\mathrm{Mn}(4-\mathrm{CPOA})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}(\mathrm{Gu}$, Gao, Huo et al., 2004) and $\left[\mathrm{Ni}(4-\mathrm{CPOA})\left(2,2^{\prime} \text {-bipyridine }\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}(\mathrm{Gu}$, Gao, Zhao et al., 2004), in which the $\mathrm{Mn}^{\mathrm{II}}$ and $\mathrm{Ni}^{\mathrm{II}}$ atoms exhibit distorted pentagonal-bipyramidal and octahedral geometries, respectively. We have now isolated the title novel

Received 3 November 2004 Accepted 8 November 2004 Online 13 November 2004
one-dimensional $\mathrm{Co}^{\mathrm{II}}$ complex, $\left\{\left[\mathrm{Co}(4-\mathrm{CPOA})(3-\mathrm{PyOH})_{2}-\right.\right.$ $\left.\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, (I), obtained by the reaction of 4-carboxyphenoxyacetic acid, 3-hydroxypyridine and cobalt diacetate trihydrate in an aqueous solution, and present its crystal structure here.

As illustrated in Fig. 1, the asymmetric unit of (I) consists of a single segment of a polymeric neutral $\mathrm{Co}^{\mathrm{II}}$ complex, $[\mathrm{Co}(4-$ CPOA) $(3-\mathrm{PyOH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$], and one water molecule of crystallization. Each $\mathrm{Co}^{\mathrm{II}}$ atom is coordinated by two O donors from different monodentate carboxyl groups, two N donors from two 3-PyOH co-ligands [mean $\mathrm{Co}-\mathrm{N} 2.151$ (2) \AA] and two water molecules, and displays a distorted octahedral coordination configuration. The equatorial plane is defined by the atoms $\mathrm{O} 1 W, \mathrm{O} 2 W, \mathrm{~N} 2$ and O^{i} [symmetry code: (i) x, $y-1, z$]; the r.m.s. deviation of this plane is 0.02 (3) \AA and the deviation of the Co atom from the mean plane is 0.004 (2) \AA. Atoms N1 and O3 occupy the apical sites, the $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 3$ angle being $177.53(5)^{\circ}$.

The $\mathrm{Co} 1-\mathrm{O} 3_{\text {oxycarboxyl }}$ distance $[2.0974(15) \AA$ is somewhat shorter than the $\mathrm{Co} 1-\mathrm{O} 7_{\text {carboxyl }}$ distance [2.1266 (15) \AA]. The two $\mathrm{C}-\mathrm{O}$ bond distances of each carboxyl group are nearly identical (Table 1), suggesting delocalization of electrons throughout. The carboxyl group [O6-C19-O7] and benzene ring are almost coplanar, with a dihedral angle of $9.93(5)^{\circ}$, while the phenoxyacetate group is twisted out of the benzene ring plane, the $\mathrm{C} 13-\mathrm{O} 5-\mathrm{C} 12-$ C 11 torsion angle being $-81.1(2)^{\circ}$. The dihedral angles between the benzene ring and 3-PyOH co-ligands are 70.9 (4) and $68.0(4)^{\circ}$, and the dihedral angle between the $3-\mathrm{PyOH}$ coligands is 50.7 (4) ${ }^{\circ}$.

Each 4-CPOA ${ }^{2-}$ group acts in a bis-monodentate mode to bridge two $\mathrm{Co}^{\mathrm{II}}$ atoms, forming a one-dimensional chain structure (Fig. 2). The $3-\mathrm{PyOH}$ molecules act as terminal coligands and lie on one side of the chain. These polymeric

Figure 1
A view of the asymmetric unit of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.

Figure 2
The one-dimensional chain structure of (I). C-bound H atoms and the O3W water molecule have been omitted for clarity.
chains run along the b axis of the unit cell and show a corrugated arrangement. Within the chain, the closest Co . . Co distance is 10.862 (3) \AA.

The chains are further connected through extensive $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving water molecules, $3-\mathrm{PyOH}$ molecules and $4-\mathrm{CPOA}^{2-}$ groups, with the $\mathrm{O} \cdots \mathrm{O}$ distances and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles varying from 2.600 (3) to 2.979 (4) \AA and 145.4 to $177(3)^{\circ}$, respectively, yielding a supramolecular hydrogen-bonded network (Table 2 and Fig. 3).

Experimental

The title complex was prepared by the addition of 3-hydroxypyridine $(0.95 \mathrm{~g}, 10 \mathrm{mmol})$ and cobalt diacetate trihydrate $(2.28 \mathrm{~g}, 10 \mathrm{mmol})$ to a hot aqueous solution of 4-carboxyphenoxyacetic acid (1.96 g , 10 mmol), and the pH was adjusted to 6 with 0.1 M sodium hydroxide. Pink crystals of (I) were separated from the filtered solution after several days. CHN analysis, calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Co}$: C 45.89, H 4.46, N 5.63\%; found: C 46.01, H 4.40, N 5.68\%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{5}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$.
$\mathrm{H}_{2} \mathrm{O}$
$M_{r}=497.32$
Triclinic, $P \overline{1}$
$a=7.5590$ (15) A
$b=10.862(2) \AA$
$c=13.144$ (3) \AA
$\alpha=72.12$ (3) ${ }^{\circ}$
$\beta=80.82(3)^{\circ}$
$\gamma=84.33(3)^{\circ}$
$V=1012.5$ (4) \AA^{3}
Data collection
Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.735, T_{\text {max }}=0.853$
9625 measured reflections

Refinement

Refinement on F^{2}
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.105$
$S=1.03$
4570 reflections
307 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
Z=2
$$

$$
D_{x}=1.631 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 8672
reflections
$\theta=3.2-27.4^{\circ}$
$\mu=0.91 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, pink
$0.36 \times 0.25 \times 0.18 \mathrm{~mm}$

4570 independent reflections
4127 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-9 \rightarrow 9$
$k=-14 \rightarrow 14$
$l=-17 \rightarrow 17$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0647 P)^{2}\right. \\
&+0.5036 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.95 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.65 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

Co1-N1	2.1621 (17)	Co1-O2W	2.1867 (17)
Co1-N2	2.1406 (19)	O3-C11	1.256 (2)
Co1-O3	2.0974 (15)	O4-C11	1.259 (2)
$\mathrm{Co} 1-\mathrm{O} 7^{\text {i }}$	2.1266 (15)	O6-C19	1.266 (2)
Co1-O1W	2.0695 (16)	O7-C19	1.272 (2)
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 2 \mathrm{~W}$	93.62 (6)	$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 2$	177.38 (6)
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 1$	90.57 (7)	$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 2 \mathrm{~W}$	85.75 (6)
N2-Co1-O2W	91.82 (7)	$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{N} 1$	87.73 (6)
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 1$	177.53 (5)	$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{N} 2$	91.32 (7)
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 2$	87.52 (7)	$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{O} 3$	90.74 (6)
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 7^{\text {i }}$	93.38 (6)	$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{O} 7^{\mathrm{i}}$	91.13 (7)
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 2 \mathrm{~W}$	88.01 (6)	$\mathrm{O} 1 W-\mathrm{Co} 1-\mathrm{O} 2 W$	176.56 (5)
$\mathrm{O} 7^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	88.59 (6)		

Symmetry code: (i) $x, y-1, z$.

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 20 \cdots \mathrm{O} 6^{\text {iv }}$	0.87 (3)	1.76 (3)	2.620 (2)	172 (4)
$\mathrm{O} 2-\mathrm{H} 21 \cdots \mathrm{O} 3 W^{\text {iv }}$	0.85 (3)	1.77 (3)	2.600 (3)	167 (4)
$\mathrm{O} 1 W-\mathrm{H} 1 W 2 \cdots \mathrm{O} 4^{\mathrm{ii}}$	0.84 (2)	1.96 (2)	2.798 (2)	177 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 7^{\text {iii }}$	0.84 (2)	1.90 (2)	2.738 (2)	175 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 W 2 \cdots \mathrm{O} 4$	0.85 (2)	1.85 (2)	2.681 (2)	166 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 W 1 \cdots \mathrm{O}^{\text {i }}$	0.85 (2)	1.80 (2)	2.628 (2)	163 (3)
$\mathrm{O} 3 W-\mathrm{H} 3 W 2 \cdots \mathrm{O} 1^{\text {v }}$	0.85	2.24	2.979 (4)	145
$\mathrm{O} 3 W-\mathrm{H} 3 W 1 \cdots \mathrm{O} 2 W$	0.85	2.01	2.752 (3)	146

Symmetry codes: (i) $x, y-1, z$; (ii) $x-1, y, z$; (iii) $1-x, 1-y, 1-z$; (iv)
$1-x, 1-y,-z ;$ (v) $1+x, y, z$.

H atoms bound to C atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The H atoms of the water molecules and hydroxy groups were located in a difference Fourier map and refined, with $\mathrm{O}-\mathrm{H}$ distance restraints of 0.85 (1) \AA and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$, except for the H atoms of the $\mathrm{O} 3 W$ water molecule, which were refined (AFIX AFX3-AFX0 command) in fixed positions, with $\mathrm{O}-\mathrm{H}=0.85 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant No. 20101003), Heilongjiang Province Natural Science Foundation (grant No. B0007), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (grant No.

Figure 3
A packing diagram for (I). Hydrogen bonds are shown as dashed lines. H atoms bound to C atoms have been omitted.

1054G036) and Heilongjiang University for supporting this study.

References

Choi, K. Y. \& Jeon, Y. M. (2003). Inorg. Chem. Commun. 6, 1294-1296.
Gao, S., Li, J. R., Huo, L. H., Liu, J. W. \& Gu, C. S. (2004). Acta Cryst. E60, m100-m101.
Gu, C. S, Gao, S., Huo, L. H., Zhu, Z. B., Zhao, H. \& Zhao, J. G. (2004). Chin. J. Inorg. Chem. 20, 843-846.
Gu, C. S, Gao, S., Zhao, J. G., Zhu, Z. B., Zhao, H. \& Huo, L. H. (2004). Chin. J. Struct. Chem. 23, 1073-1076.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tao, J., Tong, M. L. \& Chen, X. M. (2000). J. Chem. Soc. Dalton Trans. pp. 3669-3674.

